Journal of Organometallic Chemistry, 91 (1975) 307–313 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

IDENTIFICATION OF TELLURIUM-CONTAINING COMPOUNDS BY MEANS OF MASS SPECTROMETRY

MICHAEL ALBECK^{*} and SASON SHAIK Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel) (Received November 19th, 1974)

Summary

A general mass spectrophotometric method for the identification of telluriumcontaining compounds is described. The method is based on the analysis of the typical pattern of cluster peaks containing tellurium due to -Te-, $-Te_2-$ or $>TeX_2$ (X = Cl, Br). A comparison of the computer calculated and experimental mass spectra of some of the compounds containing tellurium is given.

Introduction

A difficulty in organotellurium chemistry is the identification of the various tellurium compounds formed in the reaction of organic substrates with Te^{IV} compounds such as TeX_4 (where X is a halogen), $R_n TeX_{4-n}$ (R = organic residue, n = 1,2) or with Te^{II} compounds, such as TeX_2 and $RTeX_3$.

Although the mass spectra of several organotellurium compounds are reported in the literature [1-5] the data are often presented with inadequate detail. In our work on the reactions between TeX₄ (X = Cl, Br), $R_n TeX_{4-n}$ (R = phenyl, *p*-anisyl) and anthracene, Ph₃P and various olefins [6] it was found that a detailed mass spectra cluster peak analysis based on the functional groups -Te-, -TeTe-, $\geq TeX_2$ and TeX₃ (X = halogen) can serve as a general finger-print for the identification and characterization of organic and inorganic tellurium compounds.

Results and discussion

The mass spectra of tellurium compounds are characterized mainly by the relative intensities of the eight naturally occurring isotopes of tellurium [7]. The intensity of a spectral line in the spectrum is the sum of the probabilities of all combinations of the different isotopes having the same m/e value. For example for the group TeX_n (X = Cl, Br) the probability of the ith combination is $p_1 = (n/m)a^m b^{n-m}q_i(q_i)$ = abundance of the Te¹ isotope, a = of the X^k and b = of the X^{k+2} isotope).

TABLE 1

Spectral Line ⁰	Peak intensibes (%)						
	Te	Te ₂	TeBr ₂	TeCl ₂	TeCl3	TeBr	TeCl
м	0.09	≈0	0.02	≈0	1.04	0.05	≈0
M + 1					0.37		
M + 2	2.47	≈0	0.66	1.7	2.98	1.28	1.8
M + 3	0.89	≈0	0.22	0.05	3.32	0.45	0.7
M + 4	4.74	0.07	2.44	3.5	10.18	3.6	3.9
M + 5	7.03	0.056	2.20	4.3	3.07	3.96	5.25
M + 6	18.72	0.3	7.67	12.5	21.99	11.73	18.1
M + 7		0.40	3.74	2.7	1.00	3.51	17
M + 8	31.75	1.33	18.48	25.3	30.66	25.24	28.7
11 + 9		≈1	1.76	0.04	0.11		
M + 10	34.27	3.9	29.12	32.6	19.31	33.01	35.8
M + 11		3.2					
M + 12		8.2	15.3	14.9	5.34	17.13	8.6
M + 13		5.1					
M + 14		15.14	8.7	2.2	0.54		
M + 15		4.82					
M + 16		22.91					
M + 17							
M + 18		22.05					
M + 19							
M + 20		11.74					

CALCULATED PEAK INTENSITIES OF	THE VARIOUS ISOTOPIC	COMPOSITIONS OF	Te, Te ₂ ,
TeBr2, TeCl2, TeCl3, TeBr AND TeCl			

 $a_{M} = {}^{120}\text{Te}^{k}X_{n}$ (^kCl = 35, ^kBr = 79).

The calculated data for Te, Te₂, TeBr, TeBr₂, TeCl, TeCl₂ and TeCl₃, are given in Table 1 and Fig. 1. The experimental spectra for comparison are given in Fig. 2. (For the calculation we used a computerized program (APL) based on the above probability equation, and the published values for isotopic composi-

308

Fig. 2. Experimental mass spectra of Te, Te + TeCl2 and Te + TeBt2.

tion of tellurium and the halogens.) As can be seen from Table 1 and Figs. 1 and 2 each tellurium functional group mentioned above has its characteristic pattern of spectral lines which can serve as a fingerprint for its identification.

Te. The mass spectrum of elemental tellurium (Fig. 2) is composed of two main zones, m/e 120-130 (Te^{*}) and 244-260 (Te₂^{*}). Peaks at 61.5, 62.5, 63.5, 124.5, 125.5, 126.5 and 127.5 due to m/2e of low intensity are typical for the spectrum. There is good agreement between the calculated and the experimentally found intensities of the peaks.

 $TeX_2 + Te$. It was found [6] that the "tarry products", which are formed in most reactions between TeX₄ and olefins [8-11] and which were never completely analyzed, are composed of TeX₂ and Te, in various proportions. The spectra obtained are shown in Fig. 2, and it can be seen that the cluster peaks are as follows: Te₂ (*m/e* 244-260), Te (*m/e* 120-130), TeX (for Cl: *m/e* 157-167; Br: *m/e* 201-211), TeX₂ (for Cl: *m/e* 192-204; Br: *m/e* 280-292).

From a comparison of the relative abundance of the peaks at 244-260 and

SCHEME 1. FRAGMENTATION OF Pb2TeCl2

122-130 in the spectrum of TeX₂ with the spectrum of elemental tellurium it appears that the fragment Te⁺ is derived from both TeX₂⁺ and Te₂⁺ (Te₂ is the main constituent of free tellurium in the gas phase [12]). The secondary spectrum (m/2e) characteristic of TeX₂ is present. In the case of Te + TeCl₂, only tellurium contributes to the secondary spectrum (see above on Te), whereas in the case of the TeBr₂ + Te the TeBr₂ is also a contributor. For TeBr₂ + Te additional secondary peaks appear at m/2e: 100.5, 101.5, 102.5, 103.5, 104.5 and 105.5, which are at relative intensities corresponding to TeBr²⁺, and at 141.5, 142.5, 143.5 due to TeBr₂⁻²⁺.

Replacement of X by an organic residue, e.g. in Ph_2TeCl_2 , $p-An_2TeCl_2$ (p-An = p-Anisyl), Ph_2Te and $p-An_2Te$, does not change the general pattern of the cluster peaks from the various functional tellurium groups present in the molecule. The naturally occurring ¹³C of the organic residue does not change the typical tellurium pattern, although it changes the relative peak intensities (Table 1) and introduces some more lines between those from the tellurium. Examples of mass spectra of some organotellurium compounds are given in Fig. 3.

 Ar_2TeX_2 (Ar = phenyl, *p*-Anisyl). The fragmentation pattern of the Ar₂TeX₂ on electronic impact is expected to be the sum of the patterns from the TeX₂ and Ar₂Te components. The fragmentation schemes for Ph₂TeCl₂ and *p*-An₂TeCl₂ are given in Schemes 1 and 2 respectively. In both Ph₂TeCl₂ and *p*-An₂TeCl₂ the molecular peaks are absent and the highest *m/e* observed is due to M - Cl. Tellurides such as Ph₂Te and *p*-An₂Te have fragmentation patterns like those of the corresponding Ar₂TeX₂, including metastable peaks, but without the halide-containing peaks. As can be seen from the examples given above of the many organotellurium compounds analyzed by us, the presence of tellurium-containing groups can be detected in all cases.

Experimental

Instrumention

Mass spectra were recorded on a Hitachi--Perkin-Elmer RMU-6 spectrometer at 70 eV.

Materials

 $Te + TeX_2$ (X = Cl, Br) were obtained from the tarry residue of the reaction reported in ref. 6 by a CCl₄ solvent Soxhlet extraction of the organic materials. The inorganic residue was dried in vacuum. The TeCl₂ was identified by its disproportionation to TeCl₄ + Te on refluxing in ether [13]. The disproportionation product was identified as its pyridine complex [14]. Elemental analysis showed only tellurium and chlorine or bromine to be present. Mass spectra of TeCl₂ + Te were recorded at a probe temperature of 220° and sample temparature of 220-240°, while for TeBr₂ + Te the probe and sample temperatures were 190°.

p- An_2TeCl_2 and p- An_2Te were synthesized as described by Bergman [15]. Mass spectra of p- An_2TeCl_2 were taken at a probe and sample temperature of 200° and that of p- An_2Te at a probe and sample temperature of 110°.

 Ph_2TeCl_2 was made from PhHgCl and TeCl₄ in dioxane [15]. Mass spectra were taken at a probe and sample temperature of 250°.

Te was of 99.99% purity (Merck, Darmstadt). Mass spectra were taken at a sample and probe temperature of 250° .

References

- 1 F.D. Williams and F.X. Dunbar, Chem. Commun., (1968) 459.
- 2 A.M. Duffield, H. Budzikiewicz and C. Djerassi, J. Amer. Chem. Soc., 87 (1965) 2920.
- 3 N.P. Buu-Hoi, M. Renson and J.L. Piette, J. Heterocycl. Chem., 7 (1970) 219.
- 4 G.M. Bogolynbov, N.N. Grishin and A.A. Petrov, Zh. Obshch. Khim., 39 (1969) 2244.
- 5 N.P. Buu-Hoi, M. Mangane, P. Jacquignon, J.L. Piette and M Renson, Bull. Soc. Chim. Fr., (1971) 925.
- 6 M. Albeck and S. Shark, to be published.
- 7 R.C. Weast (Ed.), Handbook of Chemistry and Physics, The Chemical Rubber Co., Ohio, 1959, pp. 475, 476.
- 8 C.H. Fisher and A. Eisner, J. Org. Chem., 6 (1941) 169.
- 9 N. Petragnani and M.De. M. Campos, Tetrahedron, 18 (1962) 521.
- 10 M. De M. Campos and N. Petragnani, Tetrahedron Lett., 6 (1959) 11.
- 11 D. Elmaleh, S. Patai and Z. Rappoport, J. Chem. Soc. C, (1971) 3100.
- 12 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Academic Press, London, 1969, Ch. 2, 3, 11.
- 13 E.E. Aynsley, J. Chem, Soc., (1953) 3016.
- 14 N. Katsaros and J.W. George, J. Inorg. Nucl. Chem., 31 (1969) 3503.
- 15 J. Bergman, Tetrahedron, 28 (1972) 3323.